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Kemal Bidzhiev,1 Grégoire Misguich,1,2 and Hubert Saleur1,3

1Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, F-91191 Gif-sur-Yvette, France
2Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, Université de Cergy-Pontoise, F-95302 Cergy-Pontoise, France

3Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, USA

(Received 27 February 2019; revised manuscript received 10 June 2019; published 30 August 2019)

Using time-dependent density matrix renormalization group calculations we study the transport properties
(I-V curves and shot noise) of the interacting resonant level model (IRLM) in a large range of the interaction
parameter U , in the scaling limit. We find that these properties can be described remarkably well by those of
the boundary sine-Gordon model (BSG), which are known analytically [Fendley et al., Phys. Rev. B 52, 8934
(1995).]. We argue that the two models are nevertheless in different universality classes out-of-equilibrium: this
requires a delicate discussion of their infrared (IR) properties (i.e., at low bias), where we prove in particular that
the effective tunneling charge is e in the infrared regime of the IRLM (except at the self-dual point where it jumps
to 2e), while it is known to be a continuously varying function of U in the BSG. This behavior is confirmed by
careful analysis of the numerical data in the IR. The remarkable agreement of the transport properties, especially
in the crossover region, remains however unexplained.
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I. INTRODUCTION

The field of out-of-equilibrium quantum many-body sys-
tems has developed rapidly in the last decade. From studies
about the equilibration in isolated systems [1,2], to questions
about transport properties, entanglement entropy, dissipation,
or the effect of disorder, the issues raised are very diverse,
and often fundamental. However, despite the large amount of
work—both analytical and numerical—devoted to this field,
much fewer exact results are available than in the equilibrium
case. In particular, the question of how and when a model
that is integrable in equilibrium can also be solved out-of-
equilibrium remains open.

A notable exception to this state of affairs concerns trans-
port through a weak link in a Luttinger liquid [3]. This model
can be mapped in the low-energy limit onto the boundary sine-
Gordon model (BSG), and, thanks to a variety of techniques
[4–6], exact expressions can be obtained for many stationary
transport properties, and even some nonstationary ones [7].
Via exact mappings, the solution of the BSG model also
provides results for, e.g., transport through point contacts
between edges states in the fractional quantum Hall effect, or
for the Josephson current in small dissipative superconducting
junctions [8].

One of the very pleasant features of the BSG model is
that it involves a freely adjustable parameter, which can
be interpreted as the anomalous dimension of the tunneling
operator at the UV or IR limit of the renormalization group
flow, and characterizes, among others, the anomalous power
laws in the I-V characteristics. Of course, this parameter takes
a fixed value in a given realization, e.g., for a given value of
the Luttinger liquid interaction, or the quantum Hall filling
fraction.

The BSG model is solvable both in and out-of-equilibrium
(at least as far as charge transport is concerned): it is not
clear whether there are many other models sharing this nice
feature. An obvious candidate where this question can be
investigated is the interacting resonant level model (IRLM)
[9], whose solution in equilibrium is well known [10]. For
technical reasons involving the nature of the quasiparticles
scattering in the Bethe ansatz, the tricks used in [5,6] to solve
the BSG model out-of-equilibrium do not work in this case.
In [11], a solution out-of-equilibrium was found at a special
(self-dual) point U = Usd, where a hidden SU(2) symmetry
is present, which makes a mapping onto the BSG model
possible. It was speculated in [11] that the IRLM out-of-
equilibrium might well be solvable only at that point (and
of course at the point where the interaction vanishes, and
the model reduces to the usual resonant level model, RLM).
Meanwhile, in [12], a new “open Bethe ansatz” was proposed,
that should in principle allow for a new solution of the model
in equilibrium, and also make possible the calculation of, for
instance, the steady current for all values of the interaction.
Unfortunately, the method proposed in [12], while not devoid
of ambiguities, has also proven impossible to exploit in the
scaling regime, where meaningful comparison with numerics
could be carried out [13]. The question thus remains open:
can the I-V characteristics (for instance) of the IRLM be
obtained using integrability techniques for all values of the
interaction U?

A closer look at the solution of the BSG model shows
that many of its nonequilibrium properties could have been
guessed (at least at T = 0) by using general arguments of
analyticity and duality [14–16]. It is tempting to think that,
if the IRLM is indeed solvable out-of-equilibrium, educated
guesses can be made for some of its properties, by exploiting
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the underlying equilibrium RG flow, which is of Kondo type.
In order to do so of course, it is necessary to have accurate
numerical results, for all values of U (or at least a significant
range), to compare with. It is with this goal in mind that we
have carried out—as reported in the first part of this paper—an
extensive numerical (Sec. II) study, of the current (Sec. III)
and shot noise (Sec. IV) in the IRLM at T = 0. What we
found is surprising: these properties are almost identical with
those of the BSG model, once the adjustable parameter in
the latter is properly chosen to ensure the same behavior at
leading order in the UV. This holds to a remarkable (and
largely unexpected) accuracy, raising the question of whether
the solution of the BSG model could, in fact, also be the
solution of the IRLM, at least at T = 0. We discuss this point
in the second half of this paper (Sec. V), and answer it in
the negative by focusing, both analytically and numerically,
on subtle aspects of the I-V characteristics in the IR limit.
We show in particular, using bosonization and integrability
in equilibrium, that the quasiparticles which tunnel across the
dot have an effective charge e in the IR limit of the IRLM
(except at the self-dual point, where it is 2e), which departs
from the continuously varying charge in the BSG model.
This is confirmed by some numerical calculations of the
backscattered current and shot noise at low bias in the IRLM
at intermediate value of the interaction. Why the results for
the IRLM and the BSG model are so close remains however an
open question, which we discuss some more in the conclusion.

II. DEFINITION OF THE MODEL

A. Hamiltonian

The IRLM can be defined in terms of spinless fermions on
a one dimensional lattice (Fig. 1):

HIRLM = HL + HR + Hd , (1)

HL = −J
−2∑

r=−N/2

(c†
r cr+1 + H.c.), (2)

HR = −J
N/2−1∑

r=1

(c†
r cr+1 + H.c.), (3)

Hd = −J ′ ∑
r=±1

(c†
r c0 + H.c.)

+U
∑
r=±1

(
c†

r cr − 1

2

)(
c†

0c0 − 1

2

)
. (4)

Left lead Right lead
dot

J J' J' J

U U

V/2

-V/2

FIG. 1. Schematics of the IRLM. The system is prepared at t = 0
in the ground state of the model with a chemical potential V/2 in
the left lead, and −V/2 in the right lead. For t > 0 the system then
evolves with the bias switched to zero.

HL and HR describe fermions hopping (or kinetic energy)
in the left and the right “leads,” and Hd encodes the tunneling
from the leads to the dot (level at r = 0) and the density-
density interaction (strength U ) between the dot and the leads.
In the following we set the unit of energy to be the hop-
ping amplitude J = 1 (bandwidth in the leads equal to W =
4J = 4).

In what follows we are interested in the so-called scaling
regime where the bandwidth is much larger that the other
energies in the problem. In this regime many properties can
be calculated using the continuum counterpart, modulo the
replacement of U (lattice model) by Uc (in the continuum, see
Sec. III A). Strictly speaking the scaling regime is attained in
the lattice model when 0 < J ′ � J and V � W . On the other
hand, the numerics are necessarily performed with a finite J ′
and finite V , and too small values of these parameters would
lead to large transient times, exceeding the times accessible
to the simulations. One should therefore work in a range of
bias and hopping such that, at the same time, corrections to
scaling are negligible and a quasisteady values are reached in
a time accessible to the numerics. As observed in previous
studies on this problem (see for instance [11,17]), it is fortu-
nately possible to satisfy these constrains. Checking that the
numerical data indeed correspond to the scaling regime is a
important part of the work, and some discussion of this point
is presented in Appendix B. We also come back to this when
discussing the numerical results.

As previously done in several works [11,17–21], the initial
state is prepared with an inhomogeneous particle density,
using a bias voltage +V/2 in the left, and −V/2 in the right
one. Note that instead of using a step function, we use a
smooth function interpolating between +V/2 and −V/2:

Hbias = V/2
N/2∑

r=−N/2

tanh(r/w)c†
r cr, (5)

where 2w is a smoothing width. We typically take w = 10
lattice spacings.

B. Quench protocols

In this work we use and compare two different quench
protocols, dubbed (A) and (B). In both cases the bias V is
switched to zero for t > 0, and the wave function evolves ac-
cording to |ψ (t )〉 = exp(−iHIRLMt )|ψ〉 with some interaction
parameter U and tunneling amplitude J ′ between the leads and
the dot. The two protocols differ by their initial states. In the
protocol (A) the initial state is prepared as the ground state of
Hbias + HIRLM(U0, J ′

0) with U0 = 0 (free fermions) and with
an homogeneous hopping amplitude J ′

0 = J = 1 in the whole
chain.

On the other hand, in the protocol (B) the initial state is the
ground state of Hbias + HIRLM(U, J ′). In other words, U and
J ′ are not changed at the moment of the quench. For a simple
energy reason (see Appendix C), this initial state should be
preferred at large U . It also produces a lower amount of
entanglement entropy and thus allows for longer simulations
compared to (A).
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FIG. 2. Time evolution of the second charge cumulant C2. Red
circles represent C2 for the IRLM protocol A, blue circles rep-
resent the protocol B with parameters of the model U = 2 (self-
dual point), J ′ = 0.2, and V = 1.6. The data can be interpreted
as a linear growth superposed with (slowly damped) oscillations.
The fitting functions are f (t ) = 0.3 + 0.0165t + 0.09cos(0.764t +
3.6)exp(−0.06t ) and g(t ) = 0.24 + 0.0163t + 0.11cos(0.765t +
3.5)exp(−0.05t ). The dashed lines f0(t ) and g0(t ) correspond to the
C2 rate for protocols A and B. The exact value of d

dt C2 for the IRLM
at the self-dual point is 0.0165 (see Sec. IV).

C. Current

The (particle) current flowing through the dot is defined as

I (t ) = 1
2 [I (−1, t ) + I (0, t )], (6)

where

I (r, t ) = 2Jr,r+1 Im〈ψ (t )|c†
r cr+1|ψ (t )〉 (7)

is the expectation value of the current operator associated with
the bond r, r + 1. For the two bonds which connect the dot to
the left and right leads the hopping amplitude is Jr,r+1 = J ′
(and Jr,r+1 = J in the leads). This current is expected to reach
a steady value when t is large (but keeping tvF smaller than
the system size, where vF = 2J = 2 is the Fermi velocity in
the leads). This steady value is extracted from the numerical
data by fitting I (t ) to a constant plus damped oscillations
(more details in Appendix C).

D. Charge fluctuations and shot noise

We will also consider the second cumulant C2 of the charge
in one lead. It is defined by

C2(t ) = 〈ψ (t )|Q̂2|ψ (t )〉 − 〈ψ (t )|Q̂|ψ (t )〉2, (8)

where Q̂ = ∑N/2
r=1 c†

r cr is the operator measuring the total
charge in the right lead. A typical time evolution of this
cumulant is presented in Fig. 2. Since C2(t ) grows linearly
with time, a quantity of interest is the rate

S = d

dt
C2(t ), (9)

which goes to a constant in the steady regime. The long time
limit of S [22] is also a measure of the current noise, defined as
the zero-frequency limit

∫ ∞
−∞〈�Î (0)�Î (τ )〉dτ of the current-

current correlation function (see Appendix A).
This quantity will be studied in Sec. IV, and its dependence

on the bias will be compared with that of the BSG model.

E. The BSG template

Meanwhile, the current for the BSG model—after some
simple manipulations to allow for a slight difference in
geometry—admits two series expansions [5,23]

IBSG = V g

2π

∞∑
n=1

an(g)

(
V

TBSG

)2n(g−1)

(10)

at large V (the UV regime) and

IBSG = V

2π
− V

2πg

∞∑
n=1

an(1/g)

(
V

TBSG

)2n(−1+1/g)

(11)

at small V (the IR regime). Here g = β2

8π
,

an(g) = (−1)n+1 �(3/2)�(ng)

�(n)�[n(g − 1) + 3/2]
, (12)

and TBSG ∝ (γ ′)1/1−g.
It will be convenient in what follows to use the scaling form

IBSG = TBSG ϑ (V/TBSG), (13)

where, e.g., at large x:

ϑ (x) = xg

2π

∞∑
n=1

an(g)x2n(g−1). (14)

In the particular case g = 1/2 the series can easily be
summed to give

2π IBSG(g = 1/2) = TBSG

2
arctan

2V

TBSG
. (15)

This matches the well known result for the RLM [17] (IRLM
at U = 0)

2π IRLM(U = 0) = 4tBarctan
V

4tB
(16)

after the identification tB = TBSG
8 . Meanwhile, recall that if the

perturbation in BSG is normalized precisely as 2γ
cos βφ√

2π
(so

γ ′ =
√

2
π
γ ) we have the relation

TBSG = cBSGγ 1/1−g, (17)

with

cBSG = 2

g

(√
2 sin πg�(1 − g)√

π

)1/1−g

. (18)

So when g = 1
2 , TBSG = 8γ 2, and tB = γ 2.

We now propose to compare the measured I-V curves for
the IRLM in the scaling limit with the analytical expressions
for the BSG current. In order to do this, we need to identify
the coupling g = β2

8π
for the lattice IRLM: this can be done

by studying the algebraic decay of the current in the large
V limit of the lattice model (see the next section for a
precise definition) and comparing it with the prediction for
the continuum IRLM or BSG model. As will be discussed
in Sec. V B, the later amounts to a perturbation theory of
the continuum models by the boundary terms. We are then
left with the parameter TBSG that we determine simply by a
best fitting procedure. Note that, since the mapping on BSG
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FIG. 3. Current exponent b as a function of U . Red (A) and black
(B) dots were obtained by fitting the steady current to I (V ) = cstV −b.
Green line: Eqs. (20) and (21). Black line: perturbative expansion
(small U ) [26,27]. Numerically, the maximal value of the exponent is
bmax = 0.494, in good agreement with the exact value (bmax = 1/2).

is not supposed to work, there is no reason to use Eq. (18).
We know by dimensional analysis that TBSG ∝ γ 1/1−g, but it
is interesting to see what a dependency of the prefactor on g
looks like, compared with (18).

III. CURRENT: NUMERICS AND COMPARISON
WITH THE BSG RESULTS

A. Power-law decay of the current at large bias,
and associated exponent

In the scaling regime (J ′ � J and V � W ) the steady
current of the IRLM vanishes as a power law

IIRLM(V ) = cstV −b (19)

in the large voltage limit [11,17,24], with an exponent
given by

b = 1

2

Uc

π

(
2 − Uc

π

)
. (20)

Here large V means that V is much larger than the scale TB [to
be defined below, in Eq. (23)] but still much smaller than the
bandwidth W . The interaction constant U in the lattice model
and its counterpart Uc in a continuum limit have a simple
relation (see the Supplemental Material of Ref. [25]):

Uc =
{

4 arctan (U/2), U < 2,

4 arctan (2/U ), U > 2.
(21)

b reaches the maximum bmax = 1
2 at the self-dual point located

at U = 2 (or equivalently g = 1
4 and Uc = π ), and it is linear

in U close to U = 0. As shown in Fig. 3 (see also Fig. 4),
the exponent b(U ) extracted from the numerics by fitting
the current in the large bias regime is in good agreement
with the analytical formula [Eqs. (20) and (21)]. This is a
quite nontrivial check of the validity and of the precision
of the numerical procedure. It should also be noted that for
U < 0 the exponent b becomes negative, which means that the
current keeps growing at large bias in presence of attractive
interactions. In what follows, the analysis of the numerical
data will be made using the exact b(Uc).

-3
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U
c

U

Uc(U)
DMRG(A)
DMRG(B)

FIG. 4. Interaction strength in continuum limit Uc versus in-
teraction strength on the lattice U . Red (A) and black (B) dots
are constructed by inverting Eq. (20), where current exponent b is
obtained from tDMRG data; the black line represents Eq. (21).

B. Comparison with the I-V curve of the BSG model

The current-voltage curve of the IRLM is known exactly
in two cases: the noninteracting U = 0 case [17,28–31] and
self-dual point U = 2 [11]. At these two points, the IRLM
maps exactly to the BSG. In this section we analyze to which
extend the current IBSG given by Eq. (10) could also describe
the current of the IRLM away from the two cases above. In
other words, we will attempt to describe the current of the
IRLM in terms of the function ϑ [Eq. (14)] defined in Sec. V
for the BSG model.

1. Large bias, U, b, and g

The exponent b of the IRLM is known exactly as a function
of U Eqs. (20) and (21). In order to get the same large-bias
exponent in the IRLM and in the BSG model, the parameter g
of the BSG model has to become a function of U (or Uc):

b = 1 − 2g, (22)

with b given in Eq. (20).

2. Large bias and cIRLM

Since the prefactor cBSG appearing in the definition of the
energy scale TBSG is a priori not a universal quantity, it is
natural to redefine it for the IRLM. In other words, to compare
the current in the IRLM with that of the BSG model, we
introduce a scale

TB = cIRLMJ ′1/(1−g), (23)

where J ′ appears with the same exponent as γ in TBSG

[Eq. (17)], but a different prefactor cIRLM. A related discussion
on the prefactor of (J ′)1/(1−g) in the definition of TB can be
found in a recent work by Camacho, Schmitteckert, and Carr
[32]. In our case it is adjusted numerically (fit) so that the
analytical curve for a given g coincides with the tDMRG data
at large bias:

I IRLM
numerics 	 TB ϑ (V/TB) when V/TB 
 1 (24)

[with ϑ defined in Eq. (14)]. The result of this procedure
is a function cIRLM(b) (top panel of Fig. 5) or equivalently
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π�(2/3)
�(1/6) ≈ 4.65 (see [11])

which corresponds to U = 2 (self-dual point). Green line: cBSG(b =
0) = 8 at U = 0. (b) Same but with U on the horizontal axis.

cIRLM(U ) (bottom panel of Fig. 5). For comparison, we also
plotted cBSG Eq. (18).

In case of the free-fermion problem, i.e., g = 1/2 and
b = 0, the two models are equivalent and the theoretical
value of crossover parameters is cBSG = 8 = cIRLM, in a good
agreement with tDMRG data. Since the IRLM at Uc = π

maps exactly onto the BSG model [11], we expect to have
cIRLM = cBSG at this point too. The numerics give cIRLM ≈
4.66 while the exact result is cBSG = 8�(3/4)4/3/π2/3 ≈ 4.89.
This 5% discrepancy is might be due to finite J ′ effect, i.e.,
deviation from the scaling regime.

In Fig. 5 we also marked the value of cIRLM at the self-dual
point which was found by Boulat et al. [11]. Their estimate
for TB at this point is 2.7c0(J ′)1/(1−g) ≈ 4.65 (with g = 1/4
and c0 = 4

√
π�(2/3)
�(1/6) ). This value is in a good agreement with

our data but differs by about 5% from the exact value. Away
from the free-fermion point and away from the self-dual point,
the curves for cIRLM and cBSG are significantly different. cIRLM

monotonically decreases with increasing U but cBSG grows
past the self-dual point at U = 2. From this point of view,
the models are thus generally not equivalent, as discussed in
Sec. V. As already mentioned, the prefactors cIRLM or cBSG

are not expected to be universal quantities, so the fact that
cIRLM �= cBSG is not surprising at all. We will now go further
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FIG. 6. Rescaled I-V curves for different values of interaction,
measured using the protocol (A). U = 1 (a), U = 2 (b), and U =
3 (c). The symbol shapes encode J ′. As expected the agreement
between the IRLM numerics and the BSG is excellent for U = 2
(self-dual point), but it is also very good for U = 1, 3 where the
models are a priori not equivalent.

and investigate if the expression of Eq. (24) could also be
used, at least approximately, for finite V/TB.

3. Finite bias

Once the large-bias part of the current curve of the IRLM is
adjusted to match that of the BSG (through cIRLM, as discussed
above), we can see if the agreement persists at lower bias. The
results are displayed in Figs. 6 and 7.

The remarkable and somewhat unexpected fact is that
for U � 3 the BSG function Eqs. (14)–(24) is a very good
approximation of the IRLM current, even when V/TB is of
order 1. While the agreement is excellent at the self-dual point
(as it should, and as already noted in Refs. [11,17,33]) the
BSG function continues to describe well the IRLM current
away from U = 0 and U = 2. In fact, for U � 3, the deviation
between BSG and IRLM is of the same order of magnitude
as the numerical precision [34]. For U from 4 to U = 6
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FIG. 7. Same as Fig. 6 for U = 4 (a), 5 (b), and U = 6 (c),
using the quench protocol (B). The data depart (insets) from the BSG
curves [Eqs. (11) and (10)] in the vicinity of V/TB 	 1.

(Fig. 7) we start to observe some small discrepancy between
the numerical data and the BSG curves, close to the maximum
of the current curve, when V/TB is close to 1. The precise
magnitude of this discrepancy is however difficult to estimate
since it is in this part of the I-V curve the data sets associated
with different values of J ′ do not overlap perfectly. Also, as
can be seen in the insets of Fig. 7, the data points tend to get
closer to the BSG curve when J ′ is decreased. So, the actual
difference between the IRLM in the scaling regime and the
BSG model might be smaller than what Fig. 7 indicates.

As commented earlier, it is clear that one can expect a
certain amount of similarity between the currents in the BSG
and the IRLM. Thanks to our matching of the exponents and
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(b)

2π
 I

/T
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V/TB

IRLM U=3(A)
BSG + cIRLM. U=3

BSG 1 term
BSG 2 terms

BSG 10 terms

FIG. 8. Rescaled I-V curves for the quench protocol (A) com-
pared to different truncation orders in the large bias expansion of
the function ϑ [Eq. (14)] (black dashed and dotted lines). These
expansions capture the behavior if the IRLM in a wide range of
rescaled bias V/TB.

the TB scale (Sec. III B 2), the leading terms must agree by
construction. On the other hand, as illustrated in Fig. 8 which
shows (dotted or dashed lines) the leading term, or the sum
of the first 2 or 10 terms in this expansion, it is clear that the
leading term only is not enough to reproduce the IRLM data
close to the maximum of the current. The agreement between
the I-V curves for the two models in this region also remains
mysterious. What probably happens is that the first few terms
in the UV expansion are very close to each other. We have not
been able to check this, because of the difficulty in calculating
the higher-order terms in the Keldysh expansion of the IRLM
current (this calculation is easier in the BSG model, in part
because of the underlying integrability). But this raises the
question: could it be that the field theoretic arguments in
Sec. V are flawed and that the two models out-of-equilibrium
are in the same universality class? To answer this question, we
turn again to the IR properties.

IV. CHARGE FLUCTUATIONS AND CURRENT NOISE

To investigate further the differences between IRLM and
BSG models, we consider the current noise, as defined in
Eq. (9). The results for the BSG model follow from more
general calculations for the full counting statistics [35] of BSG
[5,23]:

F BSG(χ ) = V g

π

∞∑
n=1

an(g)

n

(
V

TBSG

)2n(g−1)

(eiχn/2 − 1), (25)
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where χ is a “counting” parameter. This also can be expanded
at the low bias V regime as

F BSG(χ ) = V

2π
iχ + V

π

∞∑
n=1

an(1/g)

n

×
(

V

TBSG

)2n(−1+1/g)

(e−iχn/2g − 1). (26)

From this function one can get the first charge cumulant, that
is the mean current I (V ) = ∂F/i∂χ [Eqs. (10) and (11)]. One
can also get the current noise:

S(V ) = −∂2F

∂χ2
. (27)

Note that charges have been normalized so that tunneling at
the small coupling (large bias) is dominated by e

2 charges.
(This convention corresponds to one electron tunneling from
one wire to the other in two steps.) The expansion at low bias
shows that, for BSG, the tunneling charge at large coupling
is e

2g .
The current noise has already been investigated numeri-

cally using tDMRG for the RLM (U = 0) [28] as well as at
the self-dual point [21,36]. In Refs. [28,36] S was formulated
in terms of the zero-frequency limit of the current-current
correlations. In Refs. [7,21], using a modified time evolution
with an explicit counting field χ , the cumulant generating
function F was estimated numerically and the noise was
extracted as the coefficient of the χ2 term. More recently,
a functional renormalization group approach [37] was used
to compute the noise in the IRLM [38,39], especially in the
regime of small U . Instead, here we compute the current noise
numerically using the relation between S and the fluctuations
of the charge, as described by Eq. (9). At any time, C2(t )
is obtained by summing all the connected density-density
correlations in the right lead:

C2(t ) =
∑

r,r′�1

G(r, r′), (28)

G(r, r′) = 〈ψ (t )|c†
r crc†

r′cr′ |ψ (t )〉
−〈ψ (t )|c†

r cr |ψ (t )〉〈ψ (t )|c†
r′cr′ |ψ (t )〉. (29)

S is then obtained by extracting (fits) the coefficient of the
linear growth of C2(t ) with time, as illustrated in Fig. 2 .

The resulting S-V curves are presented in Figs. 9 and 10
(see Fig. 11 for some raw data, without rescaling). For U = 0
(upper panel of Fig. 9) the data are in good agreement with
the exact free-fermion result:

S(V )

TB
= 1

8π

[
arctan

(
2V

TB

)
− 2V/TB

1 + (2V/TB)2

]
. (30)

Our data at U = 0 are also consistent with the results of
Ref. [36].

At U = 0 and up to U = 2 we observe a good collapse
of the rescaled curves (obtained for different values of J ′)
onto a single master curve, as for rescaled current I (V ) or the
entanglement entropy rate α(V ) [17]. This indicates that, in
the scaling regime, S/TB is a function of the rescaled voltage
V/TB. Such a collapse remains visible for larger values of the
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(b)
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J’=0.3
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IRLM, U=2(A) J’=0.5
Self-dual point, U=2

FIG. 9. Rescaled charge second cumulant rate S/TB versus V/TB

for U = 0 (a), 1 (b), and 2 (c). The symbol shape encodes J ′. The
full line for U = 0 corresponds to Eq. (30). For U �= 0 the full
lines correspond to Eqs. (25)–(27). Data obtained with the protocol
A. These plots are constructed without any adjustable parameters:
to obtain TB, b(Uc ) is taken from Eqs. (20) and (21) and cIRLM is
determined from the large bias analysis of the current.

interaction strength (Fig. 10), but we have a lower numerical
precision at large U and large V/TB.

To analyze these data, we compare the shot noise S/TB of
the IRLM with that of the BSG (full lines in Figs. 9 and 10).
We stress that there is no new adjustable parameter, since for
each U and J ′ we use the scale TB (and cIRLM) determined
from the analysis of the current. At U = 2 (bottom panel
in Fig. 9) the data turn out to be in excellent agreement
with the theoretical prediction for the BSG [Eqs. (26), (25),

075157-7



BIDZHIEV, MISGUICH, AND SALEUR PHYSICAL REVIEW B 100, 075157 (2019)

 0

 0.01

 0.02

 0.03

 0.04

 0  1  2  3  4  5  6  7

(c)

V/TB

J’=0.2
J’=0.3
J’=0.4
IRLM, U=6(B) J’=0.5
BSG + cIRLM. U=6

 0

 0.01

 0.02

 0.03

 0.04

 0  1  2  3  4  5  6  7

(a)

BSG + cIRLM. U=4
IRLM U=4(B)

 0

 0.01

 0.02

 0.03

 0.04

 0  1  2  3  4  5  6  7

(b)

S
/T

B

BSG + cIRLM. U=5
IRLM, U=5(B)

FIG. 10. Same as Fig. 9, for U = 4 (a), 5 (b), and 6 (c) and the
quench protocol (B).
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FIG. 11. Shot noise S as a function of bare bias V for U = 1
(A), 4 (B) with J ′ = 0.4 and U = 5 (B) with J ′ = 0.3. Most of the
calculations are done with 0.6 � V � 1.6. The low bias V regime is
hard to access in this approach since the period of the oscillations
T = 4π/V (see Fig. 2) can exceed the simulation time.

and (27)]. Quite remarkably, the agreement remains good
away from the two points where the models are known to be
exactly equivalent, from U = 0 up to U � 3. This implies, in
particular, that the shot noise in the IRLM decreases at large
bias with an exponent which is very close (or identical) to
that of the BSG model. The later is also the exponent b(U )
describing the current decay in the large rescaled bias regime.
The fact that the current and the shot noise decay with the
same exponent in the UV regime has already been noticed in
[38] for small (perturbative) U , but it is observed here to hold
at large U too.

For very large values of U , above 	3, some difference
between the current noise of the IRLM and that of the BSG
model start to appear (Fig. 10). So, with the precision of
the present numerics, the shot noise in the IRLM and the
BSG model can only be distinguished at large U and in the
crossover regime V/TB 	 1–2.

V. IRLM VERSUS BSG

The agreement between the results for the IRLM and those
for the BSG model is spectacular. Recall that the results for
the two models are compared after two adjustments only: one
for the anomalous dimension of the tunneling operator, and
one for the crossover temperature. These two parameters are
of course not enough to fix the whole crossover curves in
general. In fact, were we not aware of the expected difference
between the IRLM and the BSG model, a look at the curves
would lead us to conclude that the two models are, in fact,
“probably in the same universality class” as far as their steady
out-of-equilibrium properties are concerned. We do not think
this is the case however, as we discuss now.

A. The field-theoretic description

The IRLM [40] admits two field theoretic formulations
which are close to, but in general not identical with, the
BSG model. Both formulations are obtained using bosoniza-
tion. Their difference originates in the fact that one can first
make linear combinations of the fermions in each lead then
bosonize, or first bosonize, then make linear combinations
of the resulting bosons. The first reformulation leads to an
anisotropic Kondo Hamiltonian:

H (1)
IRLM =

∑
a=±

H0(φa) + γ√
π

κ+[eiβφ+(0)S+ + H.c.], (31)

where H0(φa) = 1
2

∫
dx(∂xφa)2 is the free boson Hamiltonian.

Here the two leads have been unfolded so that the bosons
are chiral, with equal-time commutators [φa(x), φb(x′)] =
δab

i
4 sgn(x − x′). We have φ± = 1

β
[(

√
4π − α)ϕ± ∓ αϕ∓],

where α = Uc√
π

and β2 = 2
π

(Uc − π )2 + 2π ; κ+ = ηη+. The
fields ϕ± bosonize the even and odd combinations of physi-
cal fermions ψ± ≡ 1√

2
(ψ1 ± ψ2) : ψ± = η±√

2π
ei

√
4πϕ± . Mean-

while, η± are Klein factors. The self-dual case is Usd = π

corresponding to α = √
π , while the noninteracting case is

Uc = α = 0. Finally, the amplitude γ is related with ampli-
tudes in the initial field theoretic formulation following [40].
How this amplitude is related with the tunneling term in the
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lattice Hamiltonian (the “bare” coupling constant) will be
discussed below.

The second reformulation mixes somehow the Kondo and
the BSG Hamiltonians, and reads

H (2)
IRLM =

∑
a=±

H0(φa) + γ√
2π

[V1(0)O2(0)S+ + H.c.], (32)

where V±1 = e±iβ1φ1 , O2 = κ1V2 + κ2V−2, V±2 = e±i
√

2πφ2 ,
κa = κηa. We have set β1 = √

2π − α
√

2, so β2 = β2
1 + 2π .

The fields are now φ1 = 1√
2
(ϕ1 + ϕ2) and φ2 = 1√

2
(ϕ1 − ϕ2)

where ϕ1,2 bosonize the fermions ψ1,2 in each lead indepen-
dently.

The voltage difference between the leads translates into
a term V coupled to the charge

∫
∂xφ2. The current can be

calculated using the Keldysh method and the Hamiltonian
(32) where V±2 → e±iV tV±2.

We now turn to the BSG model

HBSG = H0(φ2) + γ ′ cos βφ2(0), (33)

with the Hamiltonian chosen in such a way that the tunneling
term has the same dimension g ≡ β2

8π
as in the IRLM, and

γ ′ ∝ γ . The voltage can similarly be introduced by e±iβφ2 →
e±i(βφ2+V t ). The difference between (32) and (33) is obvious:
the second Hamiltonian involves only two vertex operators,
and does not contain any spin. This leads to profoundly dif-
ferent RG flows in equilibrium: for the BSG model, the flow
is between Neumann and Dirichlet boundary conditions, with,
for instance, a ratio of boundary degeneracies [41,42] that
depends on β. For the IRLM the flow is between Neumann
with a decoupled extra spin and Neumann, and the ratio
of boundary degeneracies is equal to 2, irrespective of the
coupling β.

B. IR physics

The Hamiltonian (33) definitely looks different from (31)
and (32)—and, in particular, does not involve a discrete spin
degree of freedom. As just discussed, some of their equi-
librium properties definitely are different. This is however
no proof at all that the corresponding steady-state out-of-
equilibrium properties are not in the same universality class.
Certainly, as far as transport is concerned, the UV and IR fixed
points are similar in both models. Moreover, expansions in
powers of the UV coupling constants (γ ′, γ ) are also formally
identical: if say the T = 0 I-V curves are different in both
models, this can only be because of quantitative differences
in these expansions. Unfortunately, since we compare the two
models after adjusting the crossover scale, such quantitative
difference can only be seen after a sixth order Keldysh cal-
culation of the current for the IRLM in powers of γ (the
corresponding expansion for the BSG model is known, thanks
in part to its integrability). The required calculations are not
present in the literature, and are beyond the scope of this work.

Luckily, we can also explore the potential difference be-
tween transport in the IRLM and BSG model by considering
instead the vicinity of the IR fixed point. This is the limit
of close to perfect transmission (with, for the IRLM, the
impurity spin hybridized with the leads), where the voltage
is small, or the coupling constants γ , γ ′ large. Of course, this

regime is usually very difficult to control since it it outside
the perturbative domain. In our case however, the difficulty
can be bypassed using general techniques of integrability in
equilibrium.

To see what happens, it is more convenient to use the
Hamiltonian (31). According to [43], the approach to the IR
fixed point is given by an infinite series of operators O2n which
are well defined expressions in terms of the stress energy
tensor, and whose coefficients are known exactly, and scale
as γ −(2n−1)/1−g, where g is the dimension of the perturbation
in the UV, g = β2

8π
. We have for instance [44]

O2 = 1

2π
T,

O4 = 1

2π
: T 2 :,

O6 = 1

2π

(
: T 3 : −c + 2

12
: T ∂2T :

)
, (34)

while

T = −2π : (∂φ+)2 : +i(1 − g)

√
2π

g
∂2φ+ (35)

and c = 1 − 6 (1−g)2

g . Here all the fields are defined exactly like
before.

To understand the argument, it is now enough to consider
the derivatives

∂ϕ+ ∼ (ψ†
1 + ψ

†
2 )(ψ1 + ψ2) ∼ ∂φ1 + cos

√
8πφ2,

∂ϕ− ∼ (ψ†
1 − ψ

†
2 )(ψ1 − ψ2) ∼ ∂φ1 − cos

√
8πφ2, (36)

where ∼ means up to proportionality coefficients in all the
terms on the right-hand side. In the generic case, it follows that
∂φ+ is a linear combination of ∂φ1 and cos

√
8πφ2. Therefore,

the stress tensor term T (35) is a combination involving, as far
as charge transferring terms are concerned, ∂φ1 cos

√
8πφ2

and ∂φ2 sin
√

8πφ2, the latter term coming from the ∂2φ+.
Now—and this is the crucial point—when considering : T 2 :
and the products

∂φ1(resp.2)(z) cos
√

8πφ2(z)∂φ1(resp.2)(w) cos
√

8πφ2(w)

and using

∂φ1(resp.2)(z)∂φ1(resp.2)(w) ∼ 1

(z − w)2
+ · · ·

together with

cos
√

8πφ2(z) cos
√

8πφ2(w) ∼ 1

(z − w)2
(1 + · · · )

+ (z − w)2(cos 2
√

8πφ2(w) + · · · ) (37)

we will generate in : T 2 : a term cos 2
√

8πφ2. Meanwhile, the
bosonized expression of T itself involved a ∂φ1 cos

√
8πφ2

term, so we see we generate terms corresponding to different
transfers of charge, that is, different integer multiples of√

8πφ2 in the exponentials. Meanwhile, all these terms come
with the proper power of the UV coupling constant γ , in this
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case:

∂φ1 cos
√

8πφ2, coupling γ −1/(1−g), charge e,

cos 2
√

8πφ2, coupling γ −3/(1−g), charge 2e. (38)

We see that the transfer of charge in the IR involves in general
two terms at leading order, transporting respectively e and 2e,
with different scaling coefficients. The full counting statistics
[35] at leading order for instance would be a function of
γ −1/(1−g)e−iχ and γ −3/(1−g)e−2iχ (where χ is the counting
variable coupled to the charge). In particular, the leading
term always corresponds to tunneling of electrons. This is in
agreement with the fact that the anisotropic Kondo fixed point
is a Fermi liquid.

Note that the argument breaks down if the amplitude of
the leading term γ −1/(1−g)e−iχ happens to vanish. This is
precisely what happens in the self-dual case, since then ∂φ+
contains the term cos

√
8πφ2 only. In that case, the bosonized

version of T does not contain a cos
√

8πφ2 term anymore,
while the : T 2 : term still contains a cos 2

√
8πφ2 term as be-

fore. In fact, one can show that at all orders in the O2n, all that
appears are cos 2

√
8πφ2 terms. Hence the transferred charges

in this case are multiples of 2e, not of e, a fact in agreement
with the equivalence with the boundary sine-Gordon model
at this point. Note that the result is not incompatible with the
fixed point being Fermi liquid: what happens is simply that
amplitudes in the mapping conspire to cancel the usual term
describing tunneling of single electrons, and what is observed
is tunneling of pairs instead.

The other case where the argument breaks down is the free-
fermion case g = 1

2 . In this case indeed, all quantities O2n can
be expressed solely as

O2n ∼ ψ
†
+∂2n−1ψ+ (39)

and thus all involve only cos
√

8πφ2, corresponding to the
transfer of charges e, and an expansion for the FCS in terms
of γ −2e−iχ .

To summarize this technical section: tunneling in the
IR for the IRLM involves in general γ −1/(1−g)e−iχ and
γ −3/(1−g)e−2iχ , corresponding at leading order to transfers of
charge e and charge 2e. It involves the first combination only
when g = 1

2 and the second only when g = 1
4 . The IR behavior

is thus dominated by transfer of electrons for all values of U
but Usd, where it is then dominated by transfer of pairs of
electrons instead. This extends a result of Ref. [38], which
stated that the effective charge is e[1 + O(U 2)], and which
was therefore relevant only in the vicinity of the noninteract-
ing RLM.

This fact is the best way to state physically the difference
between the IRLM and the BSG models. For the BSG model
(33) the approach to the IR fixed point is described, up to
operators that do not transfer charge, only by the operator
cos 8π

β
φ2. This means that, if the tunneling charge in the UV

is normalized to be e
2 , the charge in the IR is 4π

β2 e. This is
2e at the self-dual point, e at the noninteracting point, and a
nontrivial, coupling dependent, not integer multiple of e in
between (Fig. 12). Hence the nature of charge transfer in the
two models should be profoundly different in the infrared.
This can be seen explicitly in the behavior of two different

 1

 1.5
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 0  0.5  1  1.5  2  2.5  3

IR
 c

ha
rg

e 
/ e
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IRLM

FIG. 12. Charge of quasiparticles dominating transport in the
deep IR for the IRLM and BSG model. The charge for the IRLM
differs from e only at the self-dual point where it becomes equal to
2e, whereas the charge for the BSG model is a nontrivial function of
the interaction parameter U .

quantities: the small bias backscattered current, and the shot
noise.

C. Small bias and backscattered current

The difference in the value of tunneling charges has con-
sequences on the I-V characteristics. In fact, the low-bias ex-
pansion of the steady current in the IRLM has been computed
up to order O(V 6) by Freton and Boulat [25]. They computed
the backscattered current IBS = V/2π − I , i.e., the difference
between the current I and the value of the current in absence
of impurity. Their result reads [45]

IBS

TB
= XV 3

48g2T 3
B

×
[

1 + 3κ4 ∗ 3V 2(X 2 − 10X + 5)

40gT 2
B

+3V 2(X 2 + 1)

40g2T 2
B

]
+ O

[(
V

TB

)7
]
, (40)

where X = 4g − 1 and

κ2n = (g/π )n−1

(n − 1
2 )n!

�
(

2n−1
2(1−g)

)
�

( g(2n−1)
2(1−g)

)
[

�
( g

2(1−g)

)
�

(
1

2(1−g)

)
]2n−1

. (41)

This shows that for the IRLM IBS vanishes as V 3 at low
bias. On the other hand, the backscattered current in the BSG
model can be read of Eq. (11), and its leading term has
an exponent which varies continuously with g: IBSG

BS /TBSG ∼
(V/TBSG)2/g−1. So, for sufficiently low V the numerical data
for the IRLM should show a V 3 behavior and should depart
from the BSG results if U �= 0 and if U �= 2. At the self-
dual point the coefficient of the V 3 and V 5 terms vanish and
the leading term in IBS becomes O(V 7) [25], in agreement
with the BSG result at g = 1/4. All these features can be
understood with an IR perturbative analysis similar to the
one sketched in Sec. V. The data plotted in Fig. 13 illustrate
the low-bias behaviors of IBS at the self-dual point (bottom
panel), and at a more generic value of U (upper panel). We see
that, in fact, the currents in the BSG and IRLM have different
analytical behaviors in this region—and that these properties
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FIG. 13. (a) Rescaled backscattered current IBS/TB =
V/(2πTB) − I/TB as a function of V/TBS at U = 1. (b) Same
for U = 2 (self-dual point). For U = 2, IBS vanishes as V 7 at low
V , as expected from the equivalence with the BSG at the self-dual
point. For U = 1, the data are consistent with V 3, as expected for
the IRLM away from the self-dual point. Data obtained using the
protocol B.

are in agreement with the field theoretic analysis. While the
low-bias data at U = 1 follow the perturbative prediction for
the IRLM as it should, it is striking that IBS then joins the BSG
curve for V/TB � 0.5, although there is a priori no reason why
it should do so at such intermediate bias.

D. Charge of the carriers

We checked numerically that we get the correct charge e
2 at

large voltage, independently of the interaction. This was done
by computing the ratio S/I , and verifying that it approaches
e/2 at large bias. It is, however, more difficult to extract
the charge at small voltage in general. Since both S and IBS

become very small at low bias (almost perfect transmission),
it is difficult to achieve a good numerical precision for these
two quantities and for their ratio, the so-called backscatter-
ing Fano factor. The Fano factor is plotted in Fig. 14 for
U = 1 (upper panel) and U = 2 (lower panel). Since errors
(due to finite-time simulations) are the largest at low bias,
one may discard the two lowest-bias data points. In that
case, the Fano factor extrapolates to some value close to e

2g =
2e at the exactly solvable point g = 1

4 (U = 2), in agreement
with the arguments given in Sec. V B. It should be noted that a
very similar result has been obtained in Ref. [36]. The data for
the other values of the interaction are, unfortunately, harder to
analyze, but they are compatible with a charge e for all other
values of the interaction (as expected from the field theoretic
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FIG. 14. S/IBS versus rescaled bias V/TB for U = 1 (a) and 2 (b).
This ratio is also known as the backscattering Fano factor. Here we
used an MPS truncation parameter δ = 10−10 and a total simulation
time T = 90 to increase a precision of numerics in the small V
regime.

discussion). At U = 1 for instance (top panel of Fig. 14), the
low-bias limit of the Fano factor is indeed close to 1 (that
is e) if we again allow ourselves to discard the two points
at low IBS, where we know—by comparison with the U = 2
case—that the error should be the largest.

VI. SUMMARY AND CONCLUSIONS

In conclusion, the formulas for the BSG model provide
excellent approximations to the steady transport properties of
the IRLM, especially for moderate values of the interaction
(U � 3) strength. While it is tempting to speculate that maybe
the two models are in the same universality class out-of-
equilibrium, a careful study of subtle aspects such as the
tunneling charge (and consequently the backscattered current)
show that this cannot be the case. In particular, our analysis of
the operators involved in the charge transport shows that the
effective charge is e in the IR regime of the IRLM (for all
U �= Usd), at variance with the behavior of the BSG model.

While one can argue that the properties “must be close”
since, after all, the two models coincide exactly for two values
of U (U = 0 and Usd), the remarkable agreement of their
I-V and shot noise curves in the crossover regime remains
very surprising. It suggests in particular that, if the IRLM is
integrable out-of-equilibrium, its solution should share many
common features with the one of the BSG model. A possible
direction of attack to understand better what is going on is
to develop a formalism where the IRLM would appear as
a perturbation of a BSG model, and study the effects of
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this perturbation on the scattering of quasiparticles, along
the lines, e.g., of [46]. Another direction is to revisit the
open Bethe-ansatz formalism of [12] by focusing on possible
similarities/differences with the BSG model. We hope to get
back to this question soon.
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APPENDIX A: SECOND CHARGE CUMULANT AND
ZERO-FREQUENCY CURRENT NOISE

To establish the (classic) relation between the rate of the
second charge cumulant [Eq. (9)] and the current noise, one
starts by writing the charge in right lead as an integral of the
current

Q̂(t ) = Q̂0 +
∫ t

0
Î (τ )dτ. (A1)

If we denote by var[X̂ ] the variance 〈X̂ 2〉 − 〈X̂ 〉2 of an opera-
tor X̂ , we have

C2(t ) = var[Q̂(t )] = var

[
Q̂0 +

∫ t

0
Î (τ )dτ

]

= var

[
Q̂(0) +

∫ t

0
�Î (τ )dτ

]
. (A2)

In the last equality we have used �Î (t ) = Î (t ) − 〈Î (t )〉. Ex-
panding Eq. (A2) we get

C2(t ) = var[Q̂(0)] +
∫ t

0

∫ t

0
〈�Î (τ )�Î (τ ′)〉dτdτ ′

+
∫ t

0
〈�Î (τ )Q̂(0)〉 +

∫ t

0
〈Q̂(0)�Î (τ )〉. (A3)

We then make the assumption that correlator 〈Q̂(0)�̂I (τ )〉
decays sufficiently quickly with τ , such that the last line in
the equation above is small compared to t when t → ∞. We
further assume that 〈�Î (τ )�Î (τ ′)〉 decays sufficiently quickly
with the time difference |τ − τ ′|. In the limit t → ∞, the
double integral will be dominated by τ and τ ′ of the order of
O(t ), and |τ − τ ′| � t . At sufficient large times the system is
in a (quasi)steady state and two-time correlations only depend
on the time difference τ − τ ′. It follows that the double
integral can be approximated by t

∫ t
−t 〈�Î (0)�Î (τ )〉dτ , or

even by t
∫ ∞
−∞〈�Î (0)�Î (τ )〉dτ . We finally get

C2(t ) 	 t
∫ ∞

−∞
〈�Î (0)�Î (τ )〉dτ (A4)
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FIG. 15. (a) Second charge cumulant C2 as a function of time and
for different values of the Trotter step τ and truncation parameter
δ (see bottom panel for the legend). (b) MPS bond dimension M
(link between the site r = −1 of the left lead and the dot at r = 0).
In most calculations, the simulation is stopped when M reaches
4000. (c) von Neumann entanglement entropy SvN between the left
and the right leads. (d) Current 2π I as a function of t . Parameters
of the model: N = 257, U = 6(B), J ′ = 0.3, and V = 1.6. As far
as the current or the entanglement entropy are concerned, all the
simulations agree relatively well, apart from the less accurate one,
with δ = 10−6 (crosses).

and

S 	
∫ ∞

−∞
〈�Î (0)�Î (τ )〉dτ. (A5)
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FIG. 16. Steady current I at U = 2 plotted as a function of the
(bare) bias V . The blue dots are tDMRG results at J ′ = 0.1 while the
red line is the exact result in the continuum (scaling regime). Top (a):
log scale showing that the current of the lattice model obeys the same
power law behavior (I ∼ V −1/2) as the continuum limit up to V � 2.
The vertical dashed lines indicate the bias range used in the present
work. Bottom (b): Same data in linear scale.

APPENDIX B: DETAILS ABOUT THE NUMERICAL
SIMULATIONS AND SCALING REGIME

The simulations are performed using a tDMRG algorithm
[47,48] implemented using the C++ iTensor library [49].
We approximate the evolution operator by a matrix-product
operator (MPO) [50] with a fourth order [17] Trotter scheme.
The largest time for our numerics is typically t 	 40 with time
step τ = 0.2, while the system size is N = 257 sites (128 sites
in each lead).

The convergence of the data with respect to the maximum
discarded weight δ and Trotter time step τ is illustrated in
Fig. 15. It appears that values between 0.1 and 0.2 for τ ,
and δ ∼ 10−7 or below give good results in the time window
we considered. As for the bottom panel also shows that an
estimate of the steady value of the current can be obtained by
fitting I (t ) to a constant plus exponentially decaying oscilla-
tions (at frequency f = V/(4π ) [20,51]).

We are interested in the scaling regime where, in principle,
J ′ � J = 1. However, if J ′ becomes very small the time to
reach a (quasi) steady state becomes very large, which is
difficult to handle in the simulations. In practice we use J ′
from 0.1 up to 0.5 and V � 1.6 (to be compared with the
bandwidth W = 4). A large range of V/TB can then be scanned
by varying V and J ′ in the intervals above. To check that the
model remains sufficiently close to the scaling regime, one
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FIG. 17. Top (a): Steady current I at U = 2 plotted as a function
of the hopping J ′ and fixed V = 1 in a log scale. The vertical dashed
lines indicate the range of J ′ used in the present work. Bottom
(b): Backscattered current IBS = V/2π − I for the same parameters.
The comparison with the exact result in the scaling regime (red
curve) shows the lattice model is reasonably well described by the
continuum limit up to J ′ 	 0.5.

verifies that rescaled quantities, like I/TB, do not significantly
depend on J ′ once they are plotted as a function of the rescaled
bias V/TB. As a comparison, we mention that the functional
RG method has the advantage of being able to work with very
small values of J ′, and can therefore go deeply into the scaling
limit of the lattice IRLM [26,52,53]. But contrary to the
present tDMRG calculations, the functional RG is controlled
only when the interaction strength U is small.

But to be more precise we investigate below, at U = 2, the
values of V and J ′ beyond which deviations from the scaling
regime become visible in the numerics. Figure 16 shows the
current computed for V up to 4, and fixed J ′ = 0.1. The
tDMRG result is compared with the exact result in the scaling
regime (red curve). As expected, the agreement is very good at
low bias, but it persists up to (almost) V ∼ 2. Above this the
lattice effects begin to affect the current. For this reason we
typically work with V of the order of unity, avoiding too small
values which would cause slow oscillations and difficulties to
estimate the asymptotic steady values.

A similar analysis, shown Fig. 17, can be done concerning
J ′. Here again we compare the lattice calculations, at U = 2,
with the exact continuum result. Both the steady current I
and the backscattered current IBS = V − 2π I are plotted in
Fig. 17. Looking at the current (upper panel), one may say that
we have a good agreement for all the values of J ′, up to the
largest one (here J ′ = 1). But this is misleading: increasing J ′
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FIG. 18. Comparison of the average interaction energy on the dot
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0〉 evolution using the protocols (A) and (B).

Same parameters as in Fig. 19.

at fixed V makes the rescaled bias V/TB smaller, and we thus
go into the IR regime. In this regime of small rescaled bias and
almost perfect transmission the current is essentially given by
I 	 V/(2π ), even in presence of strong lattice effects. So, to
check that the nontrivial features of the continuum limit of
the IRLM model are captured in the simulations, one should
look at the deviations from I 	 V/(2π ), that is one should
analyze the backscattered current. This is represented in the
bottom panel of Fig. 17, and deviations from the scaling
regime clearly appear only beyond J ′ 	 0.5. This justifies the
fact that in the present study we use J ′ up to 0.4 or 0.5, while
keeping very small the deviations from the scaling regime.
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FIG. 19. Comparison of the current evolution using the protocols
(A) and (B). Parameters of the model: N = 257, J ′ = 0.4, and
V = 1.0.

APPENDIX C: COMPARISON OF THE TWO PROTOCOLS

As described in Sec. II B, two initial states are considered
in this study. In the protocol (A) the initial state is constructed
as the ground state of a free fermion Hamiltonian with ho-
mogeneous hopping (J ′

0 = J = 1), and a chemical potential
bias between the left and the right halves of the chain. As
for protocol (B), the initial state is constructed as the ground
state of the IRLM Hamiltonian [Eq. (1), with J ′

0 = J ′ < J and
U0 = U �= 0], to which the bias term [Eq. (5)] is added.

In the protocol (A) the initial state is built from an Hamil-
tonian which is spatially homogeneous, apart from the slowly
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FIG. 20. Charge cumulant C2 using the protocols (A) and (B). In
each case, the estimate of the shot noise S is given in the legend. For
U � 3 the two protocols give markedly different results and in such
cases the protocol (B) is the most accurate one. Same parameters as
in Fig. 19.

varying Hbias. For this reason, it produces a relatively smooth
spatial variation of the fermion density in the vicinity of the
dot, by reducing possible Friedel-like oscillations. This also
produces some smooth variation of the particle density in
each lead as a function of the bias, minimizing discretization
effects that are present if starting from disconnected (or almost
disconnected) finite-size leads [54].

But since U is switched on at t = 0 in (A), the system
has some excess energy of order O(U ) that is localized in
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FIG. 21. Entanglement entropy SvN as a function of time t for
U = 2 and U = 6 with V = 1.0. The entanglement entropy is lower
with protocol (B) than with (A), especially when U is large. The
estimate of the asymptotic entropy rate α = dSvN/dt [17] is rel-
atively similar for the two protocols: αA(U = 6) = 0.08, αB(U =
6) = 0.0788, αA(U = 2) = 0.0196, αB(U = 2) = 0.021.

the vicinity of the dot at t = 0+. This is simply because
1
2 〈Sz

−1Sz
0 + Sz

1Sz
0〉 is lower in the ground state of a model

with U > 0 than in the ground state of a model with U = 0.
Although this energy is expected to get gradually diluted
across the system along the time evolution, we observe that
for U � 3–4 it can modify the observables in the vicinity of
the dot [55]. This is illustrated in Fig. 18, where the evolution
of E (t ) = 1

2 〈Sz
−1Sz

0 + Sz
1Sz

0〉 is displayed as a function of time
in the protocols (A) and (B) and a few values of U from 1 to 6.
For U = 1 or U = 3, after some transient regime E (t ) appears
to have essentially the same limit in the two protocols. The
value of the steady current is then also the same (Fig. 19). But
the situation is different for large values of U . For U = 4 the
interaction energy in the protocol (A) takes a relatively long
time to reach that of the protocol (B). In fact, at t = 25 the pro-
tocol (A) still shows some slight excess of interaction energy
compared to the case (B). The situation is then quite dramatic
for U = 6, since the up to t = 24 the interaction energy in (A)
is much higher than that of (B), without any visible tendency
to decay to a lower value. In such a situation it is not surprising
that the transport through the dot is significantly different in
(A) and (B), as can be seen in the bottom panels of Figs. 19
and 20, where the protocol (A) cannot be used to estimate the
steady current or the shot noise. Here we expect that much
longer times would be needed before the interaction energy
that is localized in the vicinity of the dot can “dissipate” in the
leads in the form of kinetic energy.

Finally, we note that the protocol (B) also leads to a smaller
entanglement entropy (see Fig. 21), and for a given maximum
bond dimension the simulations can be pushed to longer
times. For these reasons, at large U , the protocol (B) where
the U term is already present when constructing |ψ (t = 0)〉
should be preferred. On the other hand, for U = 0 and U = 2,
where exact results are available, the protocol (A) appears to
give some slightly better results (see Fig. 2).
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